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EXECUTIVE SUMMARY 

Transportation-related data such as sensed data from inductive loop detectors and other sensors 

is subject to noise and loss due to communication failures, hardware malfunctions, software 

glitches and many other causes. In addition, the volume of transportation-related data collected is 

increasing as data collection becomes cheaper and easier. For example, the Portland-area 

transportation data archive, PORTAL, contains over 700GB of data. This archive contains many 

gaps due to missing data or invalid data values. The focus of this project is to investigate data 

imputation in a real-time context.  

Performing imputation in real time has limitations that do not occur with imputation for archived 

data. This project involved an initial evaluation of several alternative imputation methods using 

inductive-loop data from PORTAL, and an analysis of the distribution of data gap length in 

PORTAL data. In addition, linear and nonlinear regression techniques were tested as possible 

imputation methods, and we have investigated the appropriate configuration of these models for 

the PORTAL loop detector data. The project’s primary conclusion is that a successful system for 

filling missing values will require a combination of imputation methods. Different methods will 

be required due to different gap lengths and patterns of data loss.  
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1.0 INTRODUCTION 

Transportation-related data is being collected in increasing volumes for systems analysis, 

operations support, traveler information and many other uses. Sensed data, such as data from 

inductive loop detectors, is subject to noise and loss from a variety of sources. In archival 

sources, a missing or suspect datum is sometimes replaced by an imputed value, an estimate of 

what the value would have been if correctly observed. Such data replacement is usually 

performed with some knowledge of the underlying generating process, either based on 

theoretical considerations or empirical models. In the archival setting, imputation can be 

performed off-line in batch mode at particular time intervals. A computationally intensive 

process is acceptable if it can be amortized over many values. 

Within a larger context, there lies an interest in processing live data streams to support (near) 

real-time information products, such as speed maps and travel-time estimates, and enhancing 

such streams through imputation of missing values in a way that introduces minimal delay. Thus, 

there are additional requirements on the imputation methodology beyond those found in the 

archival setting. One is that imputation is ―temporally one-sided,‖ in which case users are 

restricted to methods that only require inputs from the current time or the past.  Second, the 

methods must be computationally efficient on an individual-value basis, as imputation will take 

place for one or a few values at a time. As with the off-line case, estimation accuracy is 

important. However, what constitutes an appropriate level of accuracy can only be determined in 

the context a particular end-use of the data stream and its requirements. 

This project involved an initial evaluation of several alternative imputation methods in light of 

these requirements. We have used actual inductive-loop data from the Portland metro area that 

was taken from the Portland Transportation Archive Listing (PORTAL). 

This report begins with a brief overview of imputation strategy as it relates to the project. It then 

describes representative imputation methods including heuristic techniques (such as rolling 

forward the previous known measurement and using historical averages) as well as statistical 

techniques (such as linear and nonlinear regression models). The techniques reviewed illustrate 

different rationalizations of the data imputation process, in particular, temporal and spatial 

frameworks. An effort was made to guide the reader from the simple to higher order methods, 

pointing out advantages and disadvantages of each. 

We then describe the highway segment that was evaluated, present a discussion of its high-level 

traffic dynamics and provide exemplar data. An initial examination shows that there is indeed 

correlation in data between different sensor stations, which is a necessity for some of the 

spatially based imputation methods. 

Some methods appear sensitive to the length of periods of consecutive missing values (gaps). 

Thus we analyzed the lengths of gaps in a sample of PORTAL data to see if long gaps were a 

common occurrence, under different definitions of what constituted ―missing‖ data. While there 
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was no consistent pattern of gap duration across different conditions, long gaps (> 1 hour in 

duration) sometimes made up more than half of the missing data. Given that long gaps are not an 

infrequent occurrence, we tested the sensitivity of the simple roll-forward heuristic against gap 

length. Indeed, estimation accuracy declined with increasing gap length. Thus, it appeared 

worthwhile to evaluate other imputation methods to see if they could provide improvements for 

larger gap durations, with the roll-forward error providing the target for improvement. 

We tested both linear and nonlinear regression techniques as possible imputation methods, detail 

work on Gaussian Mixture Models (GMM). Unlike the simple heuristic case, there is a need to 

choose an appropriate configuration of the model, both in the inputs to include in the model as 

well as the appropriate number of components to use (which depends on the input choice). 

Multiple input choices (involving upstream stations, downstream stations or both) were 

examined and the report shares both costs of parameter exploration and training as well as the 

error realized with each. We also summarize the results of all the techniques evaluated, both for 

estimation error and relative time to impute a missing value using different methods. Finally, the 

report provides an example of analyzing the sufficiency of a given level of estimation 

performance relative to the requirements of a particular end application. 

Our main conclusion from this work is that a successful system for filling missing values 

requires a combination of imputation methods. Different methods perform better for different 

gap sizes and likely the cut-over points will vary across individual sensor locations. However, it 

is not sufficient to provide just the method with the best estimated error for a given location. 

There are reasons for using a suboptimal technique in certain situations. One is that, in some 

cases, estimation accuracy may be traded for resource usage. In the face of ―bursts‖ of gaps, a 

lower-accuracy method that consumes fewer resources may be necessary. A second reason is that 

the best method may require inputs that are unavailable because of simultaneous missing values 

at multiple locations. 

This insight helps set the course of the work ahead. Multiple imputation methods are required, 

some of which have significant configuration requirements. The approach so far has been a 

largely manual process, which will not scale to a full highway network. More automated 

approaches to configuration and training are needed, as well as assessment of which methods 

work best at particular stations or particular station types (for example, stations with no 

downstream station, or stations near splits and merges in the network). Further, instrumentation 

to monitor the performance of the models must be provided, and they must be reconfigured or 

retrained on more recent data. Finally, there is a need to provide for the dynamic selection of 

imputation method for each particular missing value, based on expected accuracy, resource 

requirements and availability of correlated values. 
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2.0 IMPUTATION STRATEGY 

When imputing missing values, one tries to answer the question of what the value would have 

been if conditions preventing the observation were not present. There are various paradigms one 

can follow to reason about missing values in the transportation domain: (1) Can a missing 

reading in a station be inferred from previous observations of that particular station? (2) Can one 

infer the missing value by looking at available values in other stations? (3) Should one consider 

temporally co-occurring measurements or should one reason about the immediate past? (4) 

Should estimation occur in a single evaluation or multiple evaluations? These questions open up 

numerous possibilities for imputation, nicely categorized by Ni et al. [18] in a multidimensional 

framework based on domain, methodology and imputed quantity. In Ni’s framework, an 

imputation strategy consists of a choice of methodology over a particular domain using a specific 

input parameter.  

In the imputation literature it is frequently reported that the American Association of State 

Highway and Transportation Officials (AASHTO) does not recommend the imputation of 

erroneous or missing values in traffic data programs [7][18][21][23]. The motivation for this 

recommendation is the lack of ability to quantify introduced errors by the imputed values. As 

discussed in Section 3.0, the effect of imputation can be measured in terms of the application it 

serves. In addition, a data archive can track which values were imputed as meta-data, so that 

applications may use the original non-imputed data if desired. Suggestions to amend the 

AASHTO guidelines have also been reported in the literature, primarily because of the 

usefulness of imputation as perceived by practitioners [21]. 

In addition to Ni’s framework, one can expand the categorization of imputation methods for 

station data looking at two dimensions: time and space. Temporal and spatial methods are 

illustrated with a high-level abstraction in Figure 2.1 and Figure 2.2. In both, the station of 

interest is labeled ―B.‖ Methods may rely on historical data to parameterize mechanisms for 

online use, but the scope of the historical measurements used differs. A temporal method, such as 

using the time-of-day historical average, will only require previous knowledge of the measured 

quantity. The scope of this method is shown as a dashed, blue rectangle in Figure 2.1. For fitting, 

spatial methods will require historical measurements of more than one station, as shown in a 

solid, red rectangle in Figure 2.1. At evaluation time, spatial methods require access in the same 

time frame to correlated spatial sources, shown as a solid box in Figure 2.2, while temporal 

methods require historical access to previous measurements, shown as a dashed box in Figure 

2.2.  Hybrid approaches may combine both temporal and spatial extents. 
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Figure 2.1  Archival lookup abstraction. 

 

Figure 2.2  Required input abstraction. 

 

Our particular interest is the enhancement of live streams of traffic measurements in the support 

of (near) real-time information products, such as speed maps. In this project, we focus on 

methods that are strictly usable for online imputation. In particular, these methods can only rely 

on data up to the time of the measurement of interest. In Figure 2.2, the set of available data 

excludes measurements to the right of the current time. Of online methods we consider: 

Self-contained Methods – Self-contained methods assume that the observed behavior of a sensor 

or station can be expressed completely in terms of itself. In general, these methods work by 

finding historical properties from which a quantity can be inferred and used to replace missing 

values. However, they are not robust when there are long gaps in the data from a sensor station. 

A simple example of such a method is replacing a missing value for a sensor by the historical 

mean value for that sensor. 

Correlated Methods – Correlated methods can ameliorate the effect of long periods of failure if 

the values used as input for these methods come from other sources likely to be online. In 
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general, either contiguous-lane measurements or measurements from other stations can be used 

to estimate the value of a missing quantity. The simplest approach used to incorporate 

information from other stations consists of averaging the measurements of the upstream and 

downstream detectors, and is briefly mentioned in the literature [18][19]. This simple method 

assumes station correlation and equal contribution from neighboring stations, and is probably the 

simplest correlation model available, in a way analogous to historical mean imputation. 
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3.0 IMPUTATION METHODS 

There are a wide variety of methods that are applicable to imputation of loop detector data, 

ranging from straightforward time-of-day imputation to more complex statistical techniques. We 

describe three types of techniques in this section: time-of-day imputation, regression — 

including linear and nonlinear regression — and Monte Carlo sampling. Later sections describe 

the experimental results of applying these techniques. 

3.1 TIME-OF-DAY HISTORICAL MEAN 

A simple mechanism for imputing missing data is to replace a missing value with a historical 

average of that value. This technique is known as historical mean imputation. The underlying 

assumption is that the values observed for a particular quantity over time are the result of a 

probability distribution, whose expected value is the mean. For Gaussian distributions, the 

expected value is a simple arithmetic average.  

 

Time of day is an important consideration for traffic data imputation as traffic measurements 

such as speeds and occupancies are likely to follow highly different patterns in peak versus off-

peak periods. An approach that addresses this issue consists in maintaining averages of the 

previous n observations at time t for previous days. This method is commonly referred to as 

time-of-day (TOD) historical average [7][18] [19][21][23][29].  

 

For example, if a reading is missing at 8:20:40 a.m., the mean of the previous n available 

observations at 8:20:40 a.m. is used to impute the missing value. Different design considerations 

can be heuristically built into such a model, for example, maintaining separate statistics for 

holidays, weekends, midweek days and incident conditions. During implementation, one must 

select a suitable choice of the number of days to include in the historical mean calculation. Too 

small a number may fail to minimize the effects of an outlier value. Too large a number can 

obscure seasonal variation (and can increase computational expense). For example, Conklin et al. 

[7] found that using 30 days of historical data to compute average volume yielded the best results 

on their experimental data sets, having searched between five and 47 days. 

 

3.2 ROLL-FORWARD 

A very simple imputation strategy is to repeat the most recent value observed when the current 

value is not present. This practice is commonly used and follows from traffic-flow properties 

assumed not to change dramatically over small periods of time. Roll-forward is expected to be a 

very effective imputation strategy for short gaps, but not an adequate method to use for long 

gaps, in particular during transition periods. The inadequacy of roll-forward when used for hour-

long gaps is shown in Figure 3.1, which illustrates speed data on sensor station 295.18 on I-5 
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North during the morning peak period. In this case, over-prediction is most noticeable between 

7:00 and 8:00.  
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Roll forward imputation for one hour intermittent gaps      
I-5 N Milepost 295.18, 05:00 - 10:00, February 13, 2007     

 

 

Observed

Imputed

 

Figure 3.1  Roll-forward inadequacy during transition periods 

 

3.3 REGRESSION 

Regression analysis involves finding a functional description of an observed data collection, 

usually with the intention of predicting new values. This loose definition does not specify 

anything about the functional description, its inputs, or the mechanism for parameterizing the 

relationship. One could use regression to impute missing traffic using either linear or nonlinear 

functions. Inputs to the regression could be data from nearby stations, very recent data (last 30 

minutes), or even historical data. In this section, we discuss both linear and nonlinear regression 

in the context of spatial correlations. We use data from nearby upstream and downstream stations 

as inputs. Parameterization is dependent on specific models. 

 

Figure 3.2 shows an example freeway segment. In this segment, there are three sensor stations, 

labeled A, B and C. At each sensor station, there are three lanes with one detector in each lane. 

For ATMS and ATIS products, the individual lane measurements are typically combined into a 

single station reading, so that for each time step we effectively have one reading for each station 

(A, B, and C in this example). Applying our regression setup to this example, we would build a 

regression model of station B based on the data from stations A and C. Thus, at a time when data 

from station B is missing, but data from A and C is available, we can impute the data for station 

B based on the data from stations A and C using the model. Simplistically, the speeds recorded at 

stations A and C at 4 p.m. can be used to impute the value of the speed at B at 4 p.m. 
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A B C

SB SCSA

Direction of flow  
Figure 3.2  Example Freeway Segment 

 

We note that while detectors provide point speed measurements, these measurements are often 

extrapolated to influence areas for products such as speed maps and travel-time estimation. A 

potential influence area for detector B is shown in light gray in Figure 3.2, defined from the 

midpoints of the location B with adjacent stations. For example, a speed map might report the 

speed for the length of the influence area to be the point speed reported by detector B. 

 

Historical time-of-day imputation described in the previous subsection would impute missing 

data for station B from data previously received from station B. In contrast, our regression 

implementation imputes missing data for station B from data received from nearby stations A 

and C in the same time frame as the missing data.  

 

3.3.1 Linear Regression 

In this subsection, we describe a method for using linear regression on concurrent values from 

nearby stations to impute missing data. In particular, we use the example of imputing missing 

data for a station B based on nearby stations A and C as shown in Figure 3.2. Under the 

assumption that the relationship between stations can be expressed as a linear function, a joint 

Gaussian probability distribution can model the relationship between the speeds at three 

locations. A multidimensional Gaussian distribution is parameterized with two statistics: the 

mean vector μ, and the covariance matrix Σ, both of which can be estimated from historical data. 

If we represent the inputs (stations A and C) with the random variable X and the target (station 

B) with the random variable Y, the parameters of the joint distribution  can be 

written in block form as: 

 

, 

 

where  is the covariance matrix of the random variable Y,  is the covariance matrix of the 

random variables Y and X,  , and  is the covariance matrix of the input X. One 

can obtain a conditional probability density  from Bayes’ Theorem, which will also be 

Gaussian. The conditional probability density is obtained by dividing the joint density by the 

marginal , which in turn can be obtained by integrating the joint probability over Y, 

. Since the expected value of a random variable distributed as Gaussian is 
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the mean, we can evaluate the conditional mean for a given input X = x. We have a target 

function which is a simple linear regressor, expressed as 

 

. 

 

3.3.2 Nonlinear Regression 

We describe several methods for using nonlinear regression to impute speed data, including 

Artificial Neural Networks (ANN) and Gaussian Mixture Models (GMM). It is hoped that 

nonlinear regressions will capture the subtle variations encountered when traffic conditions 

switch between regimes. In our recent paper [16], we tested imputation using five-minute 

resolution data and an ANN framework and observed promising results that encouraged further 

exploration of nonlinear regression, in particular with challenging datasets such as 20-second 

resolution datasets, which are very noisy. According to Ni’s framework, the strategy used in this 

paper [16] can be categorized as domain = speed, methodology = nonlinear regression, imputed 

quantity = speed. 

 

ANNs can provide good approximations when properly fit; however, it is often difficult to 

logically understand the meaning of and draw conclusions from the model parameters. ANNs are 

described by the number of hidden units, their activation function (such as a sigmoid), and a 

collection of weights and biases. One can not reason about the problem domain (correlation 

between stations, for example) in terms of the weights found in an ANN. In contrast, the weights 

obtained through linear regression may offer intuition regarding inputs that receive negligible 

weights. 

 

The GMM is defined as a weighted sum of c independent Gaussian components. For example, to 

use the concepts introduced in the previous method, let us express the joint probability 

distribution as a GMM: 

 

 , 

 

where each ith component has its own mean and covariance, , and each is weighted by a 

mixing coefficient . The mixing coefficients sum to unity: . 

 

Similarly to our previous exposition on linear regression, one can also derive an expression for 

the conditional probability distribution  using Bayes’ theorem. The steps are identical, 

but the resulting expression has a regularizing weighting function r(x) determined by the 

Gaussian components. The expression for the conditional mean is our target function, which is a 

nonlinear regressor of the form 

 

, 

 

where   is the expected value of the ith component of the mixture 

 

, 
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and 

 
 

Fitting the parameters of this model presents several challenges. For a particular choice of c, one 

has to find the optimal set of mixing coefficients, and the individual parameters of each Gaussian 

component. This problem can be posed as an incomplete data Expectation-Maximization (EM) 

problem, where the class labels of each data point are unknown and inferred iteratively [9][10]. 

The second general problem consists of determining a suitable number of components. Notice 

the careful choice of the word suitable, as determining the optimal number of components for an 

arbitrary input still remains an open problem.  

 

One approach to determine the best number of components consists in iterating through a range 

of options and performing k-fold cross-validation for each choice. The cross-validation method 

(illustrated in Figure 3.3) consists of randomly splitting the training data into k disjoint groups 

(folds), and iterating over the set k times, each time making one group the evaluation set and the 

remaining k-1 groups the training set. One can compute the regression error on the evaluation 

data group for each fold and average over k, using the average error as a measure of suitability 

for the choice c. One can then choose the number of components as the choice among the range 

that yielded the smallest regression error while training.   

 

 
Figure 3.3  Illustration of 3-fold cross-validation. 

 

While the concepts of finding the model parameters and choosing a suitable number of 

components are clear, there are a number of engineering considerations to be made. The first 

type of problem one encounters is the fact that the EM optimization begins with a random choice 

of components – this aspect means several restarts are required as one is not guaranteed to 

converge to a global optimum. The second type of problem comes from numerical stability: 

Matrices must be inverted during the fitting loops, and the initial start may have put them 

numerically close to a singular matrix, thus impossible to invert numerically. To cope with these 

problems, we call for another random restart when machine precision yields a singular matrix. 
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We also select the best of three runs for each fold to estimate the regressor error. Last, once a 

suitable number of components is selected, we select the best of three runs on the complete 

training set as the final model parameters. These choices are still not guaranteed to converge, and 

further restarts may be necessary.  

3.4 MONTE CARLO SAMPLING 

Randomized methods, commonly referred to as Monte Carlo methods, consist in drawing one or 

more samples from a particular domain and performing a deterministic computation on the 

samples to produce a desired output. Monte Carlo methods require the definition of a conditional 

probability distribution, such as the previous discussion on GMMs. 

 

This imputation method will consist in drawing n samples from the conditional probability 

distribution , by randomly selecting one of the Gaussian components and extracting the 

individual conditional expectation. While this method still uses nearby station measurements as 

inputs, the random choice of n conditional expectations and the average of those may produce 

reasonable results. Moreover, no further fitting is required, as this method is obtained ―for free.‖ 
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4.0 GAP ANALYSIS 

The need for imputation is due to missing or invalid data points. Missing or invalid data may 

occur in short or long intervals, depending on the cause. Communication errors can cause short-

lived data gaps (gaps of one minute or less) while construction or loop-detector- cabinet damage 

will cause longer data gaps lasting days or even months. In addition to data gaps, imputation may 

be desired when invalid data is detected. Invalid data is typically data that falls outside the range 

of expected data values; invalid data may occur due to hardware problems at the detector 

location or software problems in the controller or the Advanced Traffic Management System 

(ATMS) itself.  

Different imputation methods are applicable for different lengths of gaps. A simple roll-forward 

mechanism should be adequate for short gaps while more complex mechanisms will be 

necessary for longer gaps. In this section, we provide a brief analysis of gap patterns in the 

PORTAL data archive with the goal of understanding the frequency and occurrence patterns of 

gaps of various lengths.  

4.1 GAP TYPES 

Identifying invalid data is a complex issue in and of itself. The PORTAL database receives 

Portland-area freeway loop detector data from the Oregon Department of Transportation’s 

(ODOT) ATMS in real time. Each data record consists of the following: timestamp, detectorid, 

speed, volume, occupancy and status flag. Data is provided at a 20-second granularity. That is, 

one record for each detector is received every 20 seconds. Data may be missing or invalid for 

several reasons: 

 

 PORTAL did not receive data from the ATMS possibly due to ATMS failure, 

communication failure or PORTAL failure.  

 ODOT did not receive data from a detector possibly due to a detector problem or 

communication failure. 

 The data values reported fell outside of the expected range of data values. For example, a 

20-second one-lane count of greater than 17 represents a flow rate of greater than 3,000 

vehicles per lane per hour, which is highly unlikely [25].  

 

For the purpose of this project, we consider three definitions of invalid or missing data as 

different applications may have different definitions of invalid data. In all categories, data values 

that were expected, but not received, by PORTAL are included in the count of invalid data. Note 

that PORTAL can identify data not received from the ATMS since PORTAL is supposed to 

receive one reading for each detector every 20 seconds. 
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ATMS No Data: ODOT has specified that records with a zero speed, volume, occupancy and 

status indicate that no data was received from the detector. In the ATMS No Data category, all 

data with reported zero speed, volume, occupancy and status are considered as invalid.  

Data Quality Flags: The Texas Transportation Institute (TTI) has published a set of criteria for 

identifying potentially invalid data. The Data Quality Flags tests use those criteria to flag invalid 

data. In these tests, all data meeting the TTI criteria [25] listed below are considered invalid: 

 Volume > 17 (20-second records) 

 Occupancy > 95% 

 Speed > 100 mph 

 Speed = 0 when Volume > 0 

 Speed > 0 when Volume = 0 

 Occupancy > 0 when Volume = 0 

 

Zero Speed: Observations of the data received from the ATMS over time have revealed that 

records with zero speed (but not zero volume, occupancy and status) often appear invalid. Many 

such records occur overnight. Theoretically, zero speeds are a valid reading; however, large 

numbers of zero speeds are highly likely during the low-traffic overnight hours. In the Zero 

Speed category, all records with zero speed and ATMS status flag other than ―OK‖ (status = 2) 

are flagged as invalid. 

4.2 GAP FREQUENCY 

In order to develop imputation policies, it is important to understand gap patterns. The purpose 

of the tests described in this section is to understand the incidence of gaps of different lengths, 

whether there are many long gaps, many short gaps or both. In general, gaps occur either when 

the data is missing or when the data is flagged as invalid as described in the previous subsection. 

The unit of measure in the charts in this section is ―gap time.‖ That is, instead of counting the 

number of gaps of various lengths, we count the ―gap time‖ attributable to gaps of different 

lengths. For example, four 20-second gaps contribute 80 seconds of ―gap time‖; one six-minute 

gap contributes 360 seconds of ―gap time.‖ By comparing gap time instead of number of gaps, 

we obtain a better understanding of the impact of gaps of different lengths. In all charts in this 

section, gap time is calculated over all main line loop detectors in the Portland area.  

4.2.1 ATMS No Data 

Figure 4.1 is a pie chart showing the gap time of data gaps due to the ATMS reporting No Data 

for the six months between November 2007 and April 2008. In total, the gap represented in this 

picture totaled 7% of all data for this time period. From this figure, we observe first that gaps of 

various lengths occur. The most dominant gap length is over six hours, which accounts for 

approximately 75% of total gap time. However, it does not appear that any gap length is rare 

enough to be ignored, so imputation strategies will be required for all gap lengths.  

For further analysis, we compared gap patterns from three different weeks from three different 

months as well as daytime and nighttime gap patterns for this ATMS No Data category. We did 
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not find significant differences between daytime and nighttime gap patterns; however, significant 

month-to-month differences were observed. Figure 4.2 and     Figure 4.3 show the distribution of 

gap time of gaps due to the ATMS reporting No Data for a week in October 2007 and a week in 

February 2008, respectively. In total, the gaps represented in these pictures totaled 6% of all data 

for the October period and 7% of all data for the February period. As with the November 2007-

April 2008 data, gaps of length greater than six hours are dominant; however, the number of gaps 

between six and 24 hours varies greatly between the two weeks. 

 

Figure 4.1 Proportion of Gap Time by Gap Duration    ATMS No Data - Nov 2007 - Apr 2008 

 
Figure 4.2 Proportion of Gap Time by Gap Duration     Figure 4.3  Proportion of Gap Time by Gap Duration   

                   ATMS No Data – October 2007                                         ATMS No Data - February 2008 
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4.2.2 Data Quality Flags 

Figure 4.4 shows gaps of various lengths as a percentage of total gap time, and gaps are defined 

as data failing the TTI data quality criteria described above along with missing data from 

November 2007-April 2008. As with the ATMS No Data definition for data gaps, we observe 

gaps of all lengths except for 24-hour gaps. Thus, no gap length dominates, again suggesting that 

a variety of imputation methods will be required. For this gap definition, shorter gaps are more 

dominant, with over 50% of the gaps for the November 2007-April 2008 period being less than 

five minutes.     Figure 4.3 is a similar plot only for one week in October 2007. As with the 

ATMS No Data gaps, we observe significant month-to-month differences between the 

distributions of gap duration. In particular, in the November 2007-April 2008 period, there is a 

much larger proportion of gaps of less than one minute than in October 2007. Total gap time for 

November 2007-April 2008 and October 2007 is 3% and 9%, respectively. This is a significant 

variation in gap time due to failure of data quality tests. Nighttime versus daytime gap patterns 

were compared for this gap definition. It appears that there are more gaps of less than one 

minute. duration in the overnight time periods. 

 

Figure 4.4  Proportion of Gap Time by Gap Duration   Figure 4.5 Proportion of Gap Time by Gap Duration  

            Data Quality Flags - Nov 2007 - Apr 2008                       Data Quality Flags - October 2007 

4.2.3 Zero Speed 

The final data-gap definition involves declaring data with a zero speed and a status flag other 

than ―OK‖ invalid. Figure 4.6 shows gap time for November 2007-April 2008 for this definition 

of data gap. The patterns for the zero speed gaps are similar to the patterns for the gaps due to 

data-quality-flag failure. This similarity is likely due to the data quality test that declares data 

invalid if speed = 0 and volume > 0; thus both tests declare similar data invalid. 
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Figure 4.6  Proprtion of Gap Time By Gap Duration   Zero Speed - Nov 2007 - Apr 2008 

4.2.4 Summary 

In summary, the gap distribution analysis shows the presence of gaps of all lengths, with no one 

gap length dominating. Roll-forward methods provide poorer estimates as gap length increases. 

While such methods are simple and inexpensive, they will have to be augmented with other 

imputation methods to handle gaps of other lengths. 
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5.0 EXPERIMENTAL FRAMEWORK 

To test the performance of various imputation strategies, we selected a portion of the I-5 NB 

corridor. The selected segment is shown in Figure 5.1; the source image comes from Google 

Maps. The chosen segment includes five detector stations, labeled A through E. Traffic flows 

towards the top of Figure 5.1 and thus flows from station A to station E. The average detector 

spacing in this section is one mile. Station mileposts and descriptions for this segment are given 

in Table 5.1. A primary consideration in selecting this section was that it had a relatively 

complete set of data values. Completeness is important because we want to introduce gaps 

artificially, both so we can control their periodicity and duration and have the observed values to 

compare with our imputed values. 

 

Figure 5.1  Experimental Segment - I-5 NB 

 

Table 5.1  Experimental Segment – Station Descriptions 

LABEL DESCRIPTION MILEPOST 

A Kruse Way 292.18 

B Haines Way 293.18 

C Pacific Highway 293.74 

D Capital Highway 295.18 

E Spring Garden 296.26 
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Our experiments impute speed for station C (as shown in Figure 5.1) at a 20-second resolution. 

Before presenting the experimental results, we explore the high-level traffic dynamics of this 

segment for one day. Figure 5.2 shows a surface speed plot for the experimental segment. This 

plot shows a change in traffic regime occurring during the morning rush hour, with a noticeable 

speed drop roughly between mileposts 293 and 300. Other surface plots for similar time periods 

(non-holiday weekdays at the same time of day) show that there is a recurrent bottleneck near 

milepost 300 on I-5 NB. (This bottleneck is, in fact, caused by the ―Terwilliger Curves.‖) We 

examine imputation for mid-weekday mornings from 5-10 a.m. The chosen time period includes 

regime changes (from free flow to congestion and back) to illustrate the imputation challenges 

one encounters.  Notice that at this level of abstraction, lane measurements are aggregated to a 

station measurement, which is the target imputation quantity for this study. 

 

 
Figure 5.2  Surface Plot of I-5 NB - Feb 13, 2007 5-10 a.m. 

 

E 

A 
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Figure 5.3  Time Series Speed Plot. Station C. Feb 13, 2007, 5-10 a.m. 

 

Figure 5.4  Time Series Speed Plot. Station D. Feb 13, 2007, 5-10 a.m. 
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Figure 5.5  Correlation of speed measurements – two contiguous stations, C and D. 

 

In the context of imputation, it is also convenient to examine whether the time series of speed 

measurements of stations near the studied station are correlated with speed measurements at the 

target station (station C). Such exploration also can be performed heuristically. Comparing time 

series of contiguous stations can help one understand if data from consecutive stations is 

correlated; if one observes matching trends, such as a decrease or increase in overall speed 

around the same time, then one can conjecture that those stations may be correlated. Figure 5.3 

and Figure 5.4 show timeseries speed plots for station C and station D, respectively, for Feb 13, 

2007 from 5-10 a.m. A quick visual inspection indicates that speeds at these two stations are 

correlated, with the congestion lasting somewhat longer at the upstream station (D). 

Furthermore, scatter plots such as the one in Figure 5.5 suggests a nonlinear correlation. 

Several possible inputs are available for the sample scenario. The question is whether an 

imputation strategy should consider data from an upstream station, a downstream station, both, 

or multiple upstream or downstream stations. Several configurations can be assembled and 

compared to each other. Configurations are described in Table 5.2. 

Table 5.2  Sample configurations for target output "C" 

Inputs Name Intuition 

B,D Neighbors-1 Conditions in station C can be expressed in terms of its immediate 

neighbors. 

A,B,D,E Neighbors-2 Conditions in station C can be expressed in terms of its immediate 

neighbors and their neighbors. 

D Upstream-1 Conditions in station C can be expressed by looking one station upstream. 

D,E Upstream-2 Conditions in station C can be expressed by looking two stations 

upstream. 

B Downstream-1 Conditions in station C can be expressed by looking one station 

downstream. 

A,B Downstream-2 Conditions in station C can be expressed by looking two stations 

downstream. 
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Having described the experimental corridor and visually analyzed the traffic dynamics of this 

station, including correlations with recently recorded data and data from nearby stations, we 

proceed to present the results of imputation experiments on this corridor.  
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6.0 EXPERIMENTAL RESULTS 

In this section, we illustrate roll-forward in detail as an exemplar of a temporal-based technique, 

and a GMM nonlinear regression as an example of a spatial-correlated technique, providing 

model choices and specific results for different choices of inputs from the described example 

corridor. Further discussion compares best results with the output of other methods, namely, 

simple linear regression and another nonlinear regression using ANNs. We also recommend a 

comparison strategy that helps select a subset of attempted methods and configurations. 

6.1 EXPERIMENTAL SETUP 

To implement the described techniques, we used the MATLAB environment on a desktop 

machine with a Pentium 4 processor and, 1 GB of RAM, running Windows XP. Datasets were 

obtained from the Portland ADUS (PORTAL) [3]. The datasets were extracted from February 

and March 2007 data, during the morning peak period 5-10 a.m., using 15 days for the training 

set and 10 days for the test set. 

6.2 ROLL-FORWARD 

Roll-forward is a simple implementation strategy that is expected to be effective for gaps of short 

duration. Further, roll-forward is computationally cheap compared to other imputation methods. 

Section 4.0 demonstrated that data gaps of all lengths, from short 20-second gaps to gaps greater 

than 24 hours, occur in the PORTAL data and that there is no particular gap length that 

dominates. As a consequence, imputation strategies for gaps of all durations are required. It 

seems clear that roll-forward will be effective for short gaps, but will break down for longer 

gaps. In these experiments, we analyze the effectiveness of roll-forward for gaps with varying 

lengths - from 20 seconds to one hour. 

As stated above, it is believed that roll-forward will be effective for short gaps due to correlation 

between consecutive speed readings. Figure 6.1 shows the correlation between consecutive speed 

readings for the detector station at milepost 295.18 on I-5 NB. In other words, this plot shows the 

speed measured at time t (horizontal axis) vs. the speed measured at time t + 20 seconds (vertical 

axis) for all times, t, between 5-10 a.m. on Feb 13, 2007, at milepost 295.18. Figure 6.1 

demonstrates that, as expected, consecutive speed readings are highly correlated, supporting the 

conjecture that roll-forward will be an effective imputation method for short gaps.  
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Figure 6.1  Correlation of consecutive speed measurements – time t and time t+20. 

 

To understand the gap durations for which roll-forward is effective, we analyze the accuracy of 

roll-forward on gap lengths from 20 seconds up to 1 hour, a series of increasingly challenging 

gaps for roll-forward. We begin with a time series of speed measurements for 5-10 a.m. on Feb 

13, 2007, for the station at milepost 295.18 on I-5 NB; this data set was selected because of its 

relative completeness. We induce gaps of lengths 20 seconds, one minute, five minutes, 15 

minutes, 30 minutes and one hour on this time series. The gaps are introduced synthetically at 

regular intervals with alternating patterns of good and invalid data. For one-minute gaps, we 

alternate one minute of good data with a one-minute data gap. Gaps are induced by replacing 

observations with null values. We considered two disjoint gap patterns of the same length for 

each gap duration (i.e., for intermittent patterns of length 1 minute, we induced two patterns: 

preserve odd minutes and preserve even minutes). This selection helped to control for artifacts of 

gap placement. Each data value appears in one of the two gap patterns for each duration. Finally, 

the combined gap duration is the same across all cases. 

Table 6.1 shows the mean square error (MSE) of the imputed data for the selected gap lengths. 

The mean square error quantifies the amount of difference between estimated and real values. 

The square root of the MSQ has the same units as the quantity being estimated. This table reports 

MSE for both of the disjoint gap patterns (as described in the previous paragraph) as well as the 

average MSE of the two patterns. Unsurprisingly, as shown in Table 6.1, roll-forward breaks 

down as the length of gaps increases, especially when the gaps occur during transition periods. 

The average MSE ranges from 63.54 for 20-second gaps to 360.06 for one-hour gaps. These 

numbers indicate that the average errors in terms of miles per hour are ~8 mph for 20-second 

gaps and ~19 mph for one-hour gaps. Figure 6.2  illustrates how the MSE worsens as gap lengths 

increase. We suggest that any method that attempts to address longer gap lengths should be at 

least as accurate for those gap lengths as roll-forward is. For example, if an alternative method 

yields an estimated mean square error of 170 and is not related to gap lengths, it probably could 

safely be invoked for this station when gap lengths exceed 15 minutes, as it is likely to provide 

better estimates. 
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Table 6.1 Gap length and MSE; I-5 NB, milepost 295.18, Feb 13, 2007, 5-10 a.m. 

Gap length MSE, configuration 1 MSE, configuration 2 Average MSE 

20 seconds 62.06 65.02 63.54 

1 minute 70.78 82.01 76.39 

5 minutes 139.96 108.14 124.05 

15 minutes 120.76 142.95 131.86 

30 minutes 204.47 222.67 213.56 

1 hour 68.58 651.54 360.06 
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Figure 6.2  Gap length vs. MSE. 

 

Figure 6.3 shows the observed and imputed speed time series for one-hour intermittent gaps for 

5-10 a.m. on Feb 13, 2007, at milepost 295.18, I-5 NB. In this figure, from 7-8 a.m., the imputed 

speed is close to 55 mph, while the observed speed is much lower. Imputation error also occurs 

later, during the period from 9:30-10 a.m., as rush hour ends and congestion dissipates. Figure 

6.3 corresponds to configuration 2, which exhibits the worst behavior for roll-forward during this 

time period. Under configuration 2, roll-forward has ―unlucky‖ choices of the last value to roll, 

in particular since the gaps occur during transition periods. 
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Figure 6.3  Roll-forward imputation for hour-long gaps, Configuration 2. 

 

6.3 NONLINEAR REGRESSION 

Nonlinear regression is based on constructing a nonlinear model based on data observations. As 

discussed before, several nonlinear models can be used to produce a regression function. To 

illustrate the process, we choose the GMM described in Section 3.3.2.  

To address the possibility of divergence during the training set, we carefully select the starting 

points for the EM fitting process. First, we invoke a clustering algorithm, called k-means 

clustering [10]. K-means attempts to find the centroids of k clusters such that the variance of 

cluster elements is minimized. For a Gaussian mixture of k components, the centroids found by 

k-means become the initial parameters of the mixture’s parameter fitting process. This 

intermediate step provides a better starting point to EM, improving its opportunity to converge to 

a suitable set of parameters that best represents the training set. Convergence on the estimator on 

the training set is shown in Figure 6.4. Speed data for morning periods for the 15 days in the 

training data is shown at a 20-second granularity. This visualization is not a complete time series, 

as only the morning peaks are used; however, model convergence can be appreciated by 

observing that the upward and downward trends are captured.  Poor convergence, for example, 

could be manifested by a model that predicts a constant value. 
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Figure 6.4  Visualization of nonlinear regression time series on training set. 

 

 

 

Figure 6.5 shows the estimated MSE of a five-fold cross validation procedure on training data for 

different numbers of components. For the example shown, seven was a suitable number of 

components. The criterion is not just to choose the smallest error, but also to favor smaller 

models to avoid overfitting. In general, one can select, based on this criteria, by incrementally 

evaluating the regression error and not selecting a ―best so far‖ number of components unless it 

improves the current error by more than 5%. In this example, seven components reduced error by 

more than 5%, but adding an eighth component did not reduce error by more than 5% and the 

ninth component actually increased error. For each of the six configurations listed in Table 5.2, 

Table 6.2 shows the selected number of components, the time required to select the  number of 

components (searches were performed from two to 12 components), and finally the time to fit the 

model once the number of components was selected. The largest cost in terms of time investment 

comes from exploring candidate numbers of components. Fitting time can also be expensive and 

is related primarily to the number of components and inputs considered, but in this case was 

much less than component selection. Such behavior is expected in GMM model development.  

 

Figure 6.5  Component number selection for GMM 

To fit the best possible model, we fit three models for each fold from the cross-validation 

partition, and then we choose the best of those three. Convergence is not guaranteed and 
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sometimes may take longer or fail, resulting in noninvertible matrices or other precision issues. 

Downstream-1, for instance, failed to converge for model sizes larger than seven.  Convergence 

fails due to numerical instability, redundant components, or empty components being formed and 

thus yielding noninvertible matrices. 

Table 6.2  Number of suitable Gaussian components per configuration. 

Configuration Number of components Exploration time (minutes) Time to fit best model (minutes) 

Neighbors-1 7 89.5 1.8 

Neighbors-2 7 42 1.0 

Upstream-1 11 319.4 22.8 

Upstream-2 11 128.4 6.5 

Downstream-1 5 37.4 * 3.0 

Downstream-2 5 126.9 1.0 

* Searched over 2-7 components only, as larger models fail to converge. 

The ability to build several configurations serves the purpose of providing a menu of options, so 

one can fall back when all the inputs necessary for the best model are not present. Table 6.3 

shows the performance of GMM over different configurations. From this table, one would 

conclude that station C is best modeled with configuration Neighbors-1; however, other options 

such as Upstream-2 and Downstream-1 may provide good ―fall back‖ models if the required 

inputs for Neighbors-1 are unavailable. Table 6.3 suggests that for station C, looking at models 

beyond its immediate neighbors does not provide a significant advantage in terms of MSE. 

Table 6.3  Performance of GMM over different configurations 

 Neighbors-1 Neighbors-2 Upstream-1 Upstream-2 Downstream-1 Downstream-2 

Training 

set MSE 

128.89 120.15 149.95 146.77 171.41 158.04 

Training 

set error 

variance 

128.87 120.03 149.96 146.78 171.35 158.04 

Test set 

MSE 

54.84 55.77 60.91 60.81 61.74 64.84 

Test set 

error 

variance 

50.98 53.91 55.99 56.53 42.43 44.83 

 

6.4 COMPARISON OF IMPUTATION METHODS 

To choose an overall strategy, we compare the best model and architecture for each method and 

estimate the online evaluation cost. One may want to consider these alternatives in order to trade 

computational load and accept an estimated accuracy loss. Table 6.4 provides an example 

comparison under which, in terms of performance on a test set measured as MSE, the nonlinear 

regression mechanism yields the best performance. Estimating actual computation time from our 

MATLAB prototype is not easy, but can certainly be reasoned about. A TOD lookup is no more 

expensive than a database single-value lookup. If we take the computation time required to 

evaluate all test elements under a linear regression model as a baseline ―x,‖ Monte Carlo 

involves more computations (as the conditional expression of each Gaussian component involves 
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matrix multiplications) and takes approximately 20 times more evaluation time than linear 

regression. The nonlinear regression evaluation takes up to 70 times more time than the baseline. 

To give an example of the data volumes processed, the total test size was around 13,000 data 

points and it took the nonlinear regressor 14 seconds to evaluate them all. We acknowledge that 

these time measurements are not exhaustive, but do expose variations in the cost of evaluation 

time for each method. These costs should be considered in an online environment, as one could 

potentially invoke a very expensive method at the same time for hundreds of stations. Having a 

mapping of accuracy and expense can be used for dynamic optimization of resource usage. 

Table 6.4  Comparison of imputation methods. 

Model MSE of best model Best configuration Evaluation time 

Time of day historical mean 106.1 * Table lookup 

Monte Carlo conditional sampling 99.0 Upstream-2 20x 

Linear regression 58.3 Neighbors-2 x 

Nonlinear regression 54.84 Neighbors-1 70x 

* TOD relies only on historical means and does not look at other stations 

Table 6.4 compares imputation strategies based on MSE. The gap pattern is a complete block out 

of one station. An alternative evaluation mechanism focuses not only on such statistical 

measures, but on the final effect a particular imputation approach has on a target application. For 

example, the intended use of an imputation mechanism may be an online congestion map. In this 

case, we assume the choice of method is not based on attenuating the variance; rather, it is based 

on whether the imputed data causes the ―correct‖ color to be displayed on the speed map. More 

specifically, consider a congestion map that displays color-coded speeds: red for 0-25 mph, 

yellow for 25-50 mph and green for > 50 mph. If the imputed speed is 26 mph when the real data 

would have been 48 mph, the imputed data is ―correct‖ as both 26 mph and 48 mph fall in the 

25-50 mph range for the yellow color. This type of accuracy can be evaluated using confusion 

matrices that summarize the number of correct predictions (which appear in the main diagonal) 

and errors. Figure 6.6 compares a linear and nonlinear regressor (originally reported by 

Fernandez-Moctezuma et al. [16]), where the nonlinear regressor provides 9% better accuracy 

than the linear one. The colors red, yellow, and green correspond to speed cutoffs of 0-25 mph, 

25-50 mph, and 50+ mph. Notice how no critical errors (i.e., predicting free flow when 

conditions are congested) are found with either method. 

 

Figure 6.6  Confusion matrices – linear vs. nonlinear regression. 

 

In addition to comparing performance across methods, some design choices involving 

configurations for multiple input methods are required. Skyline plots provide a visual 

representation of the design space, as determined by computational expense and accuracy. An 

illustration of a skyline plot is presented in Figure 6.7. Notice the skyline dashed line – 
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configurations below it are clearly dominated by others, so implementing them in a production 

environment can be avoided.  

 

Figure 6.7  Illustration of a skyline plot. 
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7.0 CONCLUSIONS AND FUTURE WORK 

This project has conducted an initial evaluation of several alternative imputation methods 

applicable to (near) real-time data imputation. Data for the study was obtained from PORTAL, 

the region’s transportation data archive. The results demonstrate the strengths and weakness of 

various imputation methodologies. In addition, an analysis of the distribution of lengths of data 

gaps in PORTAL data was analyzed. The gap analysis results did not show a consistent pattern 

of gap duration across different conditions; however, long gaps (> 1 hour in duration) sometimes 

made up more than half of the missing data. The analysis of imputation methods indicated that 

the accuracy of the roll-forward heuristic decreases as gap length increases. Other imputation 

methods were evaluated to see if they could provide improvements for larger gap durations, with 

the roll-forward error providing the target for improvement. Linear and nonlinear regression 

techniques were tested as possible imputation methods and describe methodologies for choosing 

appropriate model configurations. Different choices (involving upstream stations, downstream 

stations or both) were examined. Our main conclusion from this work is that a successful system 

for filling missing values will require a combination of imputation methods. Different methods 

perform better for different gap sizes. However, it is not sufficient to provide just the method 

with the best estimated error for a given location. In some cases we may need to trade estimation 

accuracy for resource usage or due to unavailability of data.
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